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An Effective Entropy-Assisted Mind-Wandering
Detection System Using EEG Signals of
MM-SART Database

Yi-Ta Chen
Win-Ken Beh

Abstract—Mind-wandering (MW), which is usually de-
fined as a lapse of attention has negative effects on our
daily life. Therefore, detecting when MW occurs can pre-
vent us from those negative outcomes resulting from MW.
In this work, we first collected a multi-modal Sustained
Attention to Response Task (MM-SART) database for MW
detection. Eighty-two participants’ data were collected in
our dataset. For each participant, we collected measures
of 32-channels electroencephalogram (EEG) signals, pho-
toplethysmography (PPG) signals, galvanic skin response
(GSR) signals, eye tracker signals, and several question-
naires for detailed analyses. Then, we propose an effective
MW detection system based on the collected EEG signals.
To explore the non-linear characteristics of the EEG sig-
nals, we utilize entropy-based features. The experimental
results show that we can reach 0.712 AUC score by us-
ing the random forest (RF) classifier with the leave-one-
subject-out cross-validation. Moreover, to lower the overall
computational complexity of the MW detection system, we
propose correlation importance feature elimination (CIFE)
along with AUC-based channel selection. By using two
most significant EEG channels, we can reduce the train-
ing time of the classifier by 44.16%. By applying CIFE on
the feature set, we can further improve the AUC score to
0.725 but with only 14.6% of the selection time compared
with the recursive feature elimination (RFE). Finally, we can
apply the current work to educational scenarios nhowadays,
especially in remote learning systems.
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[. INTRODUCTION

IND-WANDERING (MW) is the experience of thoughts
M not remaining on a single topic, particularly when people
are engaged in an attention-demanding task [1]. It has been
estimated that the occurrence of MW is between 20%—40% in
our daily life [2]. If MW occurs during driving, it might put
people in danger [3]. Also, MW will degrade the efficiency
of learning if it appears when people are studying [4], espe-
cially during the COVID-19 pandemic where on-line learning
becomes a necessity. In addition, when people mind-wander,
they are unhappier than when they focus on the task at hand [5].
These negative emotions worsen the mental health of modern
people immersed in the negative information from the COVID-
19 pandemic [6]. Therefore, analyzing and detecting MW with
efficient mechanism is of great interest in recent days.

There were several experiments designed to induce MW. In
[7], they used the Sustained Attention to Response Task (SART)
to analyze the everyday attentional failures and action slips
between brain-injured patients and normal participants. In [8],
the authors designed the experiment by collecting eye gaze
data and galvanic skin response of an Affectiva Q sensor while
participants were reading texts. The authors of [9] designed a
simulated driving experiment to detect MW by EEG signals and
labeled the data by auditory probes. The aforementioned studies
have shown that MW can be induced by proper experimental
designs, and states of attention can be captured by certain
physiological measurements.

Since MW is a mental state defined as the lapse of attention,
it is highly correlated with the internal activities of our brain. As
a result, researchers often study the relationship between EEG
signals and MW. For example, event-related potentials (ERP)
were used to explore the effect of MW on processing relevant
or irrelevant events [10]. In [9], the authors observed increased
power in the « band during MW periods. In a current study
[11], the author collected data from 30 subjects using the SART
experiment design. Moreover, they analyzed the collected EEG
data using support vector machine with ERP and time-frequency
features. They found out that alpha power is most predictive of
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MW. Most of the studies applied band power and ERPs as the
major features. However, note that the EEG signals have long-
term memory effects and spatial cross-dependencies, which
require non-linear methods to extract the non-linear information.
The authors of [ 12] modeled this non-linearity with complex net-
work models and reported meaningful results with less features.
Moreover, EEG signals can be described and forecasted with a
spatial-temporal fractal model [13] that relies on few parameters
to estimate the unknown stimuli [ 14]. Most works illustrated and
supported the importance of the non-linearity features of EEG.
That also motivates us to exploit more non-linear features in the
entropy domain.

In recent years, several non-linear features of EEG were
proposed. For example, the authors employed the permutation
entropy to perform complexity analysis of Alzheimer’s disease
[15]. Wavelet entropy features were applied in discriminating
patients with attention deficit hyperactivity disorder (ADHD)
from healthy controls, and a 96% accuracy was achieved in this
task [16]. In [17], Fractal Dimension, as a type of complexity fea-
ture, was also treated as a biomarker for dementia. These related
works have demonstrated that the complexity information of
EEG can perform well in the classification tasks. However, none
of them has adopted entropy in characterizing human attentional
functions. Hence, it is desirable to extract entropy-based features
to detect MW using EEG data.

Additionally, due to the multi-channel characteristics and
large number of extracted features, the overall computational
complexity of the system becomes extremely high. Therefore,
several simplification methods were proposed to lower the to-
tal system complexity. In [18], the authors used features with
p-values smaller than 0.05 in the emotion recognition task to
reduce the total number of features. This not only reduces the
computational complexity of the classifier, but also helps analyze
the dominant features to support their study. The authors of [19]
proposed multiscale permutation entropy (MPE) to reduce the
complexity of original multiscale entropy (MSE) [20]. Those
simplified techniques can lower the total complexity and further
improve the overall efficiency of the system.

In order to build a MW detection system, several issues need
to be considered:

1) Lacking a comprehensive database for MW detection:
There are some desirable features to build a complete
MW database: First, the generalization of the database is
important. Second, multi-modality is required to evaluate
the effectiveness of different physiological signals. Third,
large number of subjects is critical to the confidence of
detection performance. There are already several experi-
ments designed to collect data for detecting MW [2], [8],
[9], [21]. Nevertheless, they cannot cover all the desired
features.

2) Lacking the exploration of non-linear EEG features for
MW detection: Many studies have focused on the process-
ing of EEG in MW detection. However, most of them
applied basic EEG features on the time or frequency
domain to reveal the differences between MW and non-
MW. Due to the non-linearity of EEG, the effectiveness
of non-linear features, such as entropy-based features,
should be explored for detecting MW.

3) High computation complexity of EEG-based MW detec-
tion system: While dealing with EEG signals, the total
number of features is relatively large due to the many
channels of EEG. Moreover, the computational com-
plexity of several entropy-based features is O(n?) [22].
Hence, if we directly extract and apply all EEG features
to the MW detection system, the overall computational
complexity will be a big burden. Hence, a efficient MW
detection system should be proposed.

To tackle the above issues, we collect a new multi-modal
Sustained Attention to Response Task (MM-SART) database,
and design an effective infrastructure of detecting MW based on
EEG signals. The main contributions of this paper are as follows:

1) Establish the Multi-modal Sustained Attention to Re-
sponse Task (MM-SART) open database: To support our
research on MW detection based on physiological sig-
nals, we design and collect a new Multi-Modal Sus-
tained Attention to Response Task (MM-SART) database.
Multi-modality physiological signals are collected in a
controlled environment to exclude external factors. Up to
now, we have collected data from 82 participants to sup-
port our analysis. To the best of our knowledge, the MM-
SART database is the first database with the most modali-
ties and the largest number of subjects for MW detection.
Moreover, the MM-SART database will be open-sourced.
For researchers who are interested in doing experiments
for MW detection, they can easily access the MM-SART
database [23] (URL: http://mmsart.ee.ntu.edu.tw/.)

2) Apply entropy-based features to MW detection: We pro-
pose to extract non-linear information of EEG based
on entropy-based features. We analyze entropy-based
features on time, frequency, and wavelet domain, re-
spectively. From the experimental results, we show that
the extracted entropy-based features are complementary
to traditional linear features (e.g., statistical and band
power features). By utilizing the new entropy-domain
features, we can reach a 0.670 F1 score, 0.318 Kappa
score, and 0.712 Area-under-Curve (AUC) score in the
leave-one-subject-out cross-validation. Comparing with
the performance of utilizing only the basic statistical
features, which is 0.630 F1 score, 0.237 Kappa score, and
0.677 AUC, we can improve our performance by 0.04 F1
score, 0.081 Kappa score, and 0.035 AUC.

3) Improve the computational efficiency of EEG-based MW
detection system: We propose to apply channel selection
and feature selection to the EEG data. We firstly apply
the AUC-based channel selection to reach the optimal
point between the number of channels and the AUC
score. Secondly, we propose a correlation importance
feature elimination (CIFE) based on the Random Forest
(RF) classifier to select the most significant features. By
applying two most significant EEG channels to the MW
detection system, we can reduce the training time of the
classifier by 44.16% with only 0.016 degradation of the
AUC score. By performing CIFE on the feature set, we can
further improve the AUC score to 0.725 with only 14.6%
of the selection time compared with the recursive feature
elimination (RFE). From the top-14 features selected
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from CIFE, there are 5 entropy-based features from differ-
ent categories, such as the T7_MFDE, T7_WL-MFDE,
FP2_MPE, FP2_WL-Ent, and FP2_cD7-WL-SpecEnt,
which shows the effectiveness of our proposed entropy-
based features.

The rest of the paper is organized as follows. In Section I, the
MM-SART database is introduced. The proposed effective MW
detection system based on EEG is presented in Section III. In
Section IV, the experiment result of the effective MW detection
system is shown. Channel selection and feature selection of the
EEG-based MW detection system are introduced in Section V.
Finally, the conclusions are drawn in Section VI.

[l. MULTI-MODAL SUSTAINED ATTENTION TO RESPONSE
TASK (MM-SART) OPEN DATABASE

A. Background

To detect and analyze the process of MW, a proper experiment
with a well-controlled environment should be proposed. More-
over, the source used to detect MW is important. MW is related to
several neural processes [24], such as increased activities in the
default mode network (DMN), suppressed activities within the
anti-correlated (task-positive) network (ACN), as well as other
changes in neuromodulations. Previous studies have utilized
these brain connections to build up a model to detect states of
attention [24]. However, using functional magnetic resonance
imaging (fMRI) is less flexible and portable, which cannot be
easily utilized in daily situations. Therefore, detecting MW
by multi-modality physiological signals is more applicable to
educational scenarios as the current study has done.

In our experiments, we adopt a modified version of the
SART. We used a pseudo-random probe-based method to access
the mental state of subjects. Moreover, we collected a multi-
modality database to support various kinds of research. The
website of the complete MM-SART database can be found in:
http://mmsart.ee.ntu.edu.tw/.

B. Participants

82 participants were recruited in the current study. Five par-
ticipants were excluded from the data analysis due to technical
issues. Therefore, we ended up with 77 participants (age range:
20-33 years old, 40 females). All of the participants were
right-handed and free from psychological and neurological dis-
orders. They all had normal or corrected-to-normal vision. The
experiment was approved by the Research Ethics Committee at
National Taiwan University (NTU REC: 201812HM004) and
executed with the compliance to the guidelines.

C. Apparatus

All stimuli were presented in a gray background on an ASUS
22” LED monitor with a spatial resolution of 1920 x 1080
pixels. EEG, eye tracker signals, and physiological signals were
recorded by 3 systems, respectively. Stimuli were presented with
E-prime (Psychology Software Tools, Pittsburgh, PA, USA),
and triggers were also sent by E-prime and synchronized with a
DB-25 connector.

EEG data were recorded with Neuroscan (El Paso, TX, USA)
with 32-channel Quick-cap (AgCl electrodes). The recordings
were originally referenced to the left mastoid (M1), and re-
referenced to the average of the left and right mastoid (M2)
offline. Vertical electrooculogram (V-EOG) was recorded from
participants’ left eye with two electrodes (one placing on ap-
proximately 2 cm above the left eye, and the other was 2 cm
below the left eye). Horizontal electrooculogram (H-EOG) was
recorded with pairs of electrodes placing at 2 cm away from the
left and right eye respectively. Before starting the experiment,
the impedances of all electrodes were kept under to ensure
the quality of data. EEG and EOG signals were amplified by
the SynAmps using a 0.05-100 Hz bandpass and continuously
sampled at 1000 Hz per channel for offline analysis.

All participants’ heart rate, skin conductance, skin tempera-
ture, and respiration data were recorded by the ProComp Infiniti
(ProComp Infiniti of Thought Technology Ltd) at 2048 Hz and
downsampled to 256 Hz while exporting the data. In addition,
their eye movements data were recorded by Tobii Eye Glasses 2
(Tobii Technology, Danderyd, Sweden) with the sampling rate
of 100 Hz.

D. Stimuli and Design

Participants were seated in a sound-attenuated room with
their eyes approximately 80cm from the monitor. They were
instructed to do the SART proposed in [25].

In this task, each block includes 25 trials and a probe at the
end of the block. Participants were instructed to press number
9 on the number-pad with their right hand to initiate a block.
Each block was embedded with 25 English letters (A-Y) in a
pseudo-random order with one target letter (i.e., letter C, and the
target probability was 4%), which appeared pseudo-randomly at
one of the trials between the 6th and 15th trial in a block.

Participants were instructed to press number 8 with their right
hand as soon as possible when they caught sight of a non-target
letter but to withhold their response when they see the target
letter “C”. Each letter was presented for 2000 ms or until the
participant responded. The inter-trial interval (ITI) varied with
the reaction time (RT) of participants so that each trial (including
ITT) lasted for 2000 ms. For example, if the participant’s response
time was 300 ms, then the ITI would be 1700 ms to equate the
duration of each trial. There were 40 blocks in total.

E. Procedure

The procedure of the overall experiment is shown in Fig. 2(b).
After signing the informed consent, participants were instructed
to fill in the questionnaires. After that, they are equipped with
bio-sensors from ProComp Infiniti to collect photoplethysmog-
raphy (PPG) signals, galvanic skin response (GSR) signals, skin
temperature on their left-hand fingers and the respiration data
with the respiration sensor on their upper abdomen. We also
used Neuroscan’s EEG cap to collect the EEG signals, and
Tobii Eye Glasses 2 to collect the eye tracking signals. Total six
kinds of signals are collected. Next, participants were recorded
during a 3-minute closed-eye and open-eye resting-state. Then,
participants were instructed to practice for 3 blocks to make sure
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Fig. 1. Overview of (a) Proposed MM-SART database, and
(b) Proposed Effective mind-wandering detection system based on EEG
signals.

that they understood the SART. Before the formal experiment
started, participants were asked to rate their sleepiness on a
4-point Likert scale (from 1: very alerted to 4: very sleepy)
of their current state. Participants were told to do the task at
their own pace and were allowed to rest at the end of each
block. After the formal experiment ended, participants were
asked to rate their state of sleepiness again on the 4-point Likert
scale, followed by closed-eye and open-eye resting-state signals
recording.

F. Self-Assessment of Participants

Self-assessment has been widely used in the research of mind-
wandering [26]. In our experiment, a probe popped out and asked
participants to classify the content of their thoughts with the
question “What was in your mind just now?”” with five options
(1. Focusing on the task; 2. Thinking of the task performance;
3. Distracted by task-unrelated stimuli; 4. Thinking of things
unrelated to the task; and 5. Nothing in particular) at the end
of the block. After classifying their thought contents, another
rating question asked participants to subjectively rate their state
of focus from 1 (completely wandering) to 7 (very focused) at the
moment before seeing the probe. Participants were told that they
should respond truthfully and that there was no correct answer
for the probe and the rating questions.

Ill. PROPOSED EEG-BASED MIND-WANDERING DETECTION
SYSTEM

In this work, we focus on designing a MW detection system
based on the EEG signal. The use of multi-modality signals
can be extended based on this initial study of the MM-SART
database. From several related works, the processing flow of the

=
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Fig. 2. (a) Data collection and synchronization among Neu-
roscan, Tobii Eye Glasses and ProComp Infiniti bio sensor system.
(b) Procedure of the SART experiment. (c) The demonstration of a
participant performing the task.

EEG can be separated into few steps as shown in Fig. 3. The
details of each building block will be described as follows.

A. Preprocessing and Labeling

In the preprocessing step, we re-reference all EEG channels
according to the average of the M1 and M2 channels. We use a
bandpass filter from 0.1 Hz to 45.0 Hz to remove the baseline and
high-frequency noise. Eye artifacts are noise when classifying
EEG signals [9], and hence independent component analysis
(ICA), such as FastICA algorithm [27], is usually applied to the
EEG to remove eye artifacts. However, according to [8], eye
blink information is useful for detecting MW. Therefore, we
propose to process the EEG signals without ICA to utilize the
information of eye movements in EEG signals.

Finally, we segment 10-s EEG signals before probes into
epochs for each subject to predict the mental state. The labeling
of each segment is based on the self-assessment score. In this
paper, we consider the 7-point Likert scale as our labeling target
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TABLE |
STATISTICAL FEATURES AND ENTROPY-BASED FEATURES IN THREE
DIFFERENT DOMAINS

Feature sets Time Frequency Wavelet
(Feature
number)
Statistical Mean, Mean Power spectral Mean power,
Power, 15tdiff, density of 6, o, Mean, Standard
Hjorth B, vy bands (4) deviation, a ratio
complexity (5) of absolute mean
values of
adjacent bands
Mean power,
Mean, Standard
deviation, a ratio
of absolute mean
values of
adjacent bands
(20)
Entropy MSE, MPE, Spectral entropy MPE, MDE,
MDE, MFDE %) MFDE (310)
(80)

to evaluate the subjective MW state. Moreover, trials scoring 4
are removed because they cannot be categorized into either of
the two states. After labeling each trial, we remove 21 subjects
who always labeled themselves as MW or not MW.

B. Feature Extraction

We extract statistical and entropy-based features, which are
summarized in Table I. As for the entropy-based features, we
extract the multiscale entropy (MSE) [20], the multiscale per-
mutation entropy (MPE) [19], the multiscale dispersion entropy
(MDE) [28], and the multiscale fluctuation-based dispersion
entropy (MFDE) [29] to capture the complexity of EEG signals
in different scales in time and wavelet domains. These non-linear
entropy-based features are introduced as follows. Note that the
“multiscale” means coarse-graining process before the entropy
calculation.

1) Multiscale Entropy (MSE): The extraction of multiscale
entropy (MSE) [20] consists of two steps. The first step is
the coarse-graining process. For a given time series x =
{x1,z9,..., 2N}, the coarse-graining process will average the
data points within a non-overlapping window of length 7, where
T is the scale factor. Each element of the coarse-grained series,

entropy calculation step is defined as follows:

(m+1)

SampEn (y(T),mﬁ) = —In , 2)

where (™) represents the coarse-grained time series, n("™) is the
number of matched patterns with dimension m in y(7), and ~
is the maximum matching tolerance, which is set to 0.1 times
standard deviation of the time series in our experiment.

2) Permutation Entropy (PE): Permutation entropy (PE) [19]
is based on the counting of ordinal patterns that describe the
up-and-down in the signals. The permutation pattern is denoted
as a motif that uses relative order to indicate different kinds of
amplitude variation of the signals. Specifically, with the pattern
of dimension m, there are m! distinct permutation patterns
{m1, T2, ..., mm} in the signal @ of length N. The probability
of each pattern is defined as:

() = #{i|0 <i<i—m, (Tig1,- .., Titm) has type 7;}
PATi)= N-m+1

)

3
and the permutation entropy value is calculated based on the
Shannon’s definition of entropy as:

m!

PermEn (z,m) = — Zp(ﬂ'j) Inp(m;).

j=1

“

3) Dispersion Entropy (DE): Dispersion entropy (DE) [28]
can detect noise bandwidth, simultaneous frequency, and ampli-
tude change. The dispersion entropy calculation consists of four
steps. In the first step, the time series € = {x1,29,..., 2N}
is mapped to ¢ classes. By employing the normal cumulative
distribute function (NCDF):

1 i _ew?
e 202 (t,
oV2T J-—co

wecanmap zintoy = {y1,ys,...

algorithm to map each y; to z](c)

Yi = (&)

,yn } - Next, we use a linear
according to

(e) _

z;’ = round (c-y; +0.5), 6)
where ZJ(»C) is an integer from 1 to c.
In the second step, the embedding vector zlgm’c) with embed-
ding dimension m and time delay d is created according to
ZZ("L’C) = {zfc), zi(i)d, RN zi(fr)(mil)d} ;1
=12,...,N—(m—-1)d. (7)
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(m.0)

The time series z; is mapped to the dispersion pat-

(e) (e)

tern Tygu, .0, 1> Where vo = 2,7, v1 =2,y ...

(c)
Zit(m—1)
to c™.

In the third step, the probability of each pattern is calculated
as:

y Um—1 =

o - The number of possible dispersion patterns is equal

p (Fvovl.--vmfl)

# {z\z <N —(m-—1)d, z§m7c) has type WUOUI...U,,,L,I}
N—-(m-1)d

®)

In the last step, the dispersion entropy with embedding di-
mension m, time delay d, and the number of classes c is defined
as follows:

DispEn (z,m,c,d)

cm

= - Zp(ﬂ—vovl...vm,l)1np(77v0v1...vm,1) . (9)
T=1

4) Fluctuation-Based Dispersion Entropy (FDE):
Fluctuation-based dispersion entropy (FDE) [29] is more
stable than dispersion entropy over the irrelevant local trend.
The main difference between FDE and DE is the second step
mentioned in the dispersion entropy. The FDE considers the
differences between adjacent elements of dispersion patterns.
Thus, each element in the fluctuation-based dispersion pattern
changes from —c+1 to ¢— 1, and there are (2¢—1)"""
possible fluctuation-based dispersion patterns. The other

calculation steps of the FDE are the same as that of DE.

C. Classifier

In related works [21], [30], [31], the authors applied several
machine learning algorithms to detect whether or not the subject
is MW, such as naive Bayes (NB), linear support vector machine
(SVM), RBF-kernel support vector machine (RBF-SVM), k-
nearest neighbors (KNN), and random forest (RF). In this paper,
we evaluate and compare the performance among the 5 most
common classifiers mentioned above.

D. Evaluation Metric

The generalizability of the data is critical in scientific re-
search. If the classifier has already seen some data from a
specific subject, overfitting to the individual may happen and
jeopardize the external validity of the model. To consider gen-
eralizability, cross-validation methods, including k-fold and
leave-one-subject-out (k equals to the number of subjects), are
required. From the experimental result from [32], the k-fold
cross-validation is pessimistically biased, especially for lower
values of k. However, for the higher k, k-fold cross validation
suffers from high variability. In another research [33], the exper-
imental results show that the variability of the k-fold cross vali-
dation decreases as the k increases, which is contradict to [32].
In summary, leave-one-subject-out cross-validation has lower

biased than k-fold cross validation due to the larger training set
and more trials to be averaged. Therefore, we apply leave-one-
subject-out cross-validation to evaluate the system performance.
Additionally, appropriate metrics should be used to compare
the performance between the methods. In this paper, we apply
three evaluation metrics, which are the weighted F1-score (F1),
Cohen’s Kappa coefficient (Kappa), and area under ROC curve
(AUC) to compare the performance between methods.

1) Weighted F1-Score (F1): When the data number within
each class is imbalanced, the classifier will tend to predict the
label of the majority class, which will gain high accuracy score.
Compared to accuracy, Fl-score is more reliable by taking the
recall and precision into consideration. The F1-score is calcu-
lated as follows:

_ 2 X Recall x Precision

Fl = 10
Recall + Precision ' (10)
where
TP TP
Recall = m N P'I"ecision = W 5 TP
= true positive rate, FP = false positive rate.
(11)

Moreover, we need to consider the performance of all the
classes. In this paper, we use a modified version of the F1-score,
weighted F1-score:

Flweighted = Puw X Flyw + Poon-mw X Flpon mw,

(12)
where Py is the number of MW instances, P,,o,,— prw 18 the
number of non-MW instances, F'1yy is the F1 score using
the MW instances as the positive class, and F'1,,5,—arw is the
F1 score using the non-MW instances as the positive class,
respectively.

2) Cohen’s Kappa Coefficient (Kappa, x): Cohen’s Kappa
coefficient [34] stands for the agreement between two raters. Itis
the proportion of agreement after chance agreement is removed
from consideration. The Cohen’s Kappa coefficient is calculated
as:

Po — Pe
k=—

—1<k<1,
1_pe

; 13)
where py is the relative observed agreement among raters, and
Pe 1s the hypothetical probability of the chance agreement. In our
case, we use Kappa to measure the agreement between true labels
and predicted labels. The better the detection system performs,
the higher the Kappa is.

3) Area Under ROC Curve (AUC): If the classifier can output
the probability of each class, then we can calculate the receiver
operating characteristic (ROC) curve. In a ROC curve, the x-axis
is the false positive rate, and the y-axis is the true positive rate.
By calculating the area under the ROC curve (AUC), we can
analyze the effectiveness of the prediction model. The chance
level of AUC is 0.5, and an excellent model has an AUC close
to 1.
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TABLE Il TABLE IV
HYPER-PARAMETERS OF EACH ENTROPY FEATURE PERFORMANCE EVALUATION BETWEEN EEG w/ AND W/O ICA
Feature Name Hyper-parameters EEG with ICA EEG without ICA (Compare
MSE sample length: 2, scale: (1,...,20) to w/ ICA)
MPE dimension m: 3, scale: (1,...,20) Classifie F1 Kappa AUC F1 Kappa AUC
MDE number of class: 6, dimension: 3, scale: (1,...,20) r
MFDE number of class: 6, dimension: 3, scale: (1,...,20) NB 0.565 0.108 0.556 0.584 0.144 0.579
Wavelet MPE | {[cA7,cD7]: {dimension: 2, scale: (1,...,20)}, [others]: N s o100 T os6 ‘50-60(;;) <(*)°i°§;> %0-6022?)
{dlm'enslor'l: 3, scale: (1,...,20)}} . : : (+(‘)_039) (+(‘)_089) (+6.052)
Wavelet {[cA7,cD7]: {dlmepsmn: 2, scale: (1,...,20)}, [others]: L-SVM 0543 0.059 0.546 0.618 0213 0.643
MDE {dimension: 3, scale: (1,...,20)}} (+0.075) | (+0.154) | (+0.102)
Wavelet {[cA7,cD7]: {dimension: 2, scale: (1,...,20)}, [others]: RBF- 0.581 | 0.135 | 0.602 | 0.654 | 0285 | 0.695
MFDE {dimension: 3, scale: (1,...,20)}} SVM (+0.073) | (+0.150) | (+0.093)
RF 0.582 0.148 0.617 0.670 0.318 0.712
TABLE IlI (+0.088) | (+0.170) | (+0.095)

HYPER-PARAMETERS OF EACH CLASSIFIER

Hyper-parameters
NB B
KNN number of neighbors: 10, weights: 'distance', metric:
'manhattan’
Linear SVM C:0.01
SVII(\/e[ n\;ve/lrbf gamma: le-4,C: 5
RF number of estimators: 700, max features: 'auto', max
depth: 12

IV. EXPERIMENT RESULTS ON EEG-BASED MW DETECTION
SYSTEM

To evaluate the EEG data of proposed MM-SART database,
several aspects are considered. First, we analyze the overall
performance of EEG data between with ICA and without ICA.
Then, we evaluate the performance among channels to find out
the impact of eye movement information. After that, we compare
the performance in each category of features and find the most
useful features for MW detection. Finally, by utilizing the feature
importance metric of RF classifiers, we aim to find the most
important features to detect MW.

In this experiment, we only apply 30 EEG channels without
the H-EOG and the V-EOG. We first do the aforementioned
preprocessing on each channel EEG, such as band-pass filter,
re-reference, and labeling. After removing the subjects who have
the same label in all trials, 56 subjects are included. We extract all
features in Table I from the preprocessed EEG signal. As for the
scale of the entropy-based features, we set it with range between
1 and 20 to get different entropy values from different scale with
coarse graining as shown in Table II. We apply random search
with 5-fold and 100-hyper-parameter combinations to decide the
hyper-parameters of each classifier shown in Table III.

A. Performance Comparison Between EEG With and
Without ICA

In this experiment, we want to observe whether eye movement
information in EEG can improve the performance of the MW
detection system. The EEG signal are processed with ICA (w/
ICA) and without ICA (w/o ICA). We then extract a total of 424
features per channel. Finally, the extracted features are evaluated
by the aforementioned five classifiers.

From Table IV, we can observe that the best performance of
both cases is acquired by applying RF classifiers as compared

Fig. 4. Heatmaps of (a) the number of salient features among all
channels on w/ICA EEG data, and (b) the number of salient features
among all channels on w/o ICA EEG data. The text on each spot is the
channel name.

TABLE V
SALIENT FEATURE NUMBER ON EACH CHANNEL COMPARING BETWEEN W/
AND W/O ICA EEG DaATA

Ch. w/ w/o Ch. w/ w/o Ch. w/ w/o
Fpl 91 90 FC4 108 120 CP4 82 97
Fp2 65 105 FT8 79 106 TP8 86 119
F7 111 116 T7 119 120 P7 53 106
F3 43 69 C3 57 93 P3 55 86
Fz 99 117 Cz 56 107 Pz 84 96
F4 120 145 C4 70 103 P4 80 67
F8 101 93 T8 118 104 P8 73 125
FT7 74 85 TP7 132 132 0] 71 109
FC3 61 127 CP3 45 83 Oz 94 130
FCz 81 122 CPz 50 83 02 78 127

“The higher the better. Therefore, the higher number is marked in bold.

to other classifiers. Therefore, in the following experiment, we
only focus on the performance of RF classifiers. The best F1,
Kappa, and AUC of EEG w/ICA are 0.582, 0.148, and 0.617,
respectively. The best F1, Kappa, and AUC of EEG w/o ICA are
0.670, 0.318, and 0.712, respectively. Therefore, EEG w/o ICA
outperforms EEG w/ ICA by 0.088 for the F1, 0.170 for Kappa,
and 0.095 for AUC. Therefore, eye movement information is
useful when detecting MW by EEG in the MM-SART database.

Moreover, we count the number of salient features (p-value
< .05) among all channels in both cases, as shown in Fig. 4
and Table V. While comparing w/ and w/o ICA, the number
of salient features by w/o ICA data is more than that by w/ICA
in most channels. Most of the features are more discriminative
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TABLE VI TABLE VI
AUC SCORE ON EACH CHANNEL COMPARING BETWEEN W/ AND W/O ICA F1/KapPPA/AUC SCORE ON SiX CATEGORIES OF FEATURES BY THE RF
EEG DATA CLASSIFIER
Ch. w/ w/o Ch. w/ w/o Ch. w/ w/o F1/K /AUC Time Frequency Wavelet
Fpl | .541 | .602 | FC4 | 518 | .590 | CP4 | 523 | .576 Statistical | 0.641/0.258/0 |  0.600/0.175/ 0.634/0.246/
Fp2 500 | .624 | FT8 | .501 | .616 | TP8 480 | .615 671 0.633 0.685
F7 | 524 | 597 | T7 | 595 | .628 | P7 | .504 | .556 Entropy | 0.664/0.308/0 0.593/0.162/ 0.459/0.021/
F3 .502 .588 C3 .533 .596 P3 490 | 571 706 0.640 0.541
Fz .556 591 Cz .508 559 Pz 510 556
F4_| 606 | .610 | C4 | 533 | .585 | P4 [ .546 | .564 TABLE VIII
F8 | 514 | .600 | T8 | 557 | .611 | P8 | 458 | .559 F1/KAPPA/AUC ON Six CATEGORIES OF FEATURES BY THE RF CLASSIFIER
FT7 465 581 TP7 574 .601 01 .566 .536
FC3 .505 557 CP3 479 557 Oz 548 525 Time Frequonc Wavelet
FCz | 519 | 587 | CPz | 537 | 559 | 02 | .556 | .566 FI/KR /AUC duency
) i ) - Statistical 0.634/0.245/0.685
*The higher the better. Therefore, the higher number is marked in bold. Statistical 0.658/0.294/ 0.638/0.253/ 0.517/0.076/
+ Entropy 0.708 0.693 0.646

Fig. 5. Heatmaps of (a) AUC score of the RF classifier on w/ICA EEG
data among all channels, and (b) AUC score of the RF classifier on w/o
ICA EEG data among all channels. The text on each spot is the channel
name.

because of the additional information of eye movements in
EEG.

Furthermore, RF classifiers are trained for each channel to
observe the AUC score of each channel. Each channel is trained
and evaluated independently in both cases to observe the impact
of eye movement information between channels. As shown in
Fig. 5 and Table V, most of the channels have better performance
on EEG w/o ICA except for channel Ol and Oz.

Also, in Fig. 5(b), we can find out that channels over the right-
frontal area have better performance which has been pointed
out in the previous studies [35], [36]. Moreover, the authors of
[37] has pointed out that vigilance and sustained attention are
impaired in subjects with right-hemisphere lesions, especially
with right frontal damage [38]. Hence, from the experiment
results, we verify that sustained attention is highly related to
the right frontal regions (FP2), which is in line with previous
clinical findings.

In addition, the channel T7, which is highly correlated to
the activity of insula [39], has the second highest performance
among all channels. As a core of the salience network, the insula
is also in charge of the detection of emotion [40]. Since most
of our self-generated thoughts involve emotional processing, it
is quite straight-forward to see higher activities of insula during
task-unrelated thoughts. Following the stream, the authors of
[41] also proposed that the bilateral insula showed higher activity
during MW, verifying the implications mentioned above. All in
all, T7 is a good predictor of MW from the previous findings
and further verified by the experiment result.

In summary, we have shown that the performance of EEG w/o
ICA outperforms EEG w/ICA no matter which classifier is used.
Moreover, by analyzing the number of salient features and AUC
of each channel, we have shown that MW is highly related to the
right frontal regions and the channel T7, which is in consistent
with previous clinical findings [30], [31], [33]-[37].

B. Performance Analysis on Entropy-Based Features

In this section, we analyze the effectiveness on different cate-
gories of features. Taking the aforementioned experiment results
into consideration, we select RF as our classifier and apply it
to EEG-without-ICA data. We train and evaluate the perfor-
mance of RF classifier on each category of features, respectively.
Furthermore, we concatenate the statistical features with three
domains of entropy-based features and observe whether the
entropy-based features can complement the statistical features
and improve the performance of the RF classifier.

The experimental result of training the classifiers by each
category of features respectively is shown in Table VII. The best
performance among six categories of features happens when
using only entropy-based features in the time domain, which
has 0.664 F1-score, 0.308 Kappa, and 0.706 AUC. Moreover, the
performance reached by only the entropy-based features in the
time domain is close to the performance when using all features,
which is 0.670 F1-score, 0.318 Kappa, and 0.712 AUC.

When combining statistical features with three domains of
entropy-based features respectively, the entropy-based features
in the time domain improve performance most, as shown in
Table VIII. Therefore, the RF classifier can learn better with the
entropy-based features in the time domain.

In summary, the extracted entropy-based features are indeed
discriminative. The performance of the RF classifier can also be
improved by applying entropy-based features. We have shown
that the entropy-based features are suitable for EEG-based MW
detection.

As a summary, we have shown that the effectiveness of
overall MW detection by using EEG signals of the MM-SART
database. We explore that reserving eye movement information
in EEG can improve overall detection performance. Moreover,
we extract entropy-based features in the time domain of EEG
to complement the statistical features (i.e., mean power, power
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spectral density), and have shown their effectiveness in detecting
MW. Finally, by analyzing the performance of different methods,
we can reach 0.670 F1, 0.318 Kappa, and 0.712 AUC in the
MM-SART database.

V. CHANNEL SELECTION AND FEATURE SELECTION ON
EEG-BASED MW DETECTION SYSTEM

In this section, we aim to optimize the overall system effi-
ciency by channel selection and feature selection. The former
aims to reduce the number of used EEG channels with only a
slight degradation of performance. The latter aims to reduce the
total number of features in the selected channels to lower the
dimension of the classifier’s input. Both approaches will help
save the computational complexity in training the RF classifier.

A. Complexity Analysis of the RF Classifier

The RF classifier [42] is an ensemble model of decision trees.
The computational complexity of building a decision tree is
O(Nkd), where N is the number of data, k is the number
of features, and d is the number of depths of the decision
tree. When building RF, two additional parameters need to be
decided: the number of trees m and the number of features
used to split in each node ksqmpie. Therefore, while building
decision trees in RF, the computational complexity is reduced
to O(Nksqmpied). The overall computational complexity of
building RF will be O(mNksqmpied). Moreover, we have to
calculate the additional computational complexity of a random
selection of features at each node, which refers to O(mkd). In
conclusion, the final computational complexity of building the
RF classifier is O(md(Nksqmpie + k)). Usually, Nkggmpie is
far larger than k, so we can estimate the total computational
complexity as O(mNEggmpled).

By analyzing the computational complexity of RF, we can
conclude that the training time of the RF classifier can be reduced
by decreasing kgqmpie, d, and m. However, the parameters d and
m are decided by the parameters searching to achieve the best
performance on the data. Thus, the only method to reduce the
computational complexity is to reduce the ksqmpie. In our case,
ksample 18 set to be the square root of k. In conclusion, the way
to improve the training efficiency of the RF classifier is to reduce
the feature dimension of the data.

B. Channel Selection and Feature Selection

As stated above, if the dimension of features can be re-
duced, the time complexity of training the RF classifier can be
reduced, too. The number of features iS Nchanner X M features
where ncpanner 18 the number of channels, and 7 f¢q1qrc 1S the
number of features per channel. Therefore, we can first reduce
the number of channels by finding the critical channels for
MW detection. Then, we can perform feature selection on the
critical channels to reduce the overall number of features. The
following will describe the method of both reducing the number
of channels and the number of features.

1) Channel Selection: To reduce the number of channels,
we apply two methods to select the optimal channels, which

is p-value channel selection and AUC-based channel selection.
The first method is to calculate the p-value of all features of each
channel. After calculating the p-value of each feature, we count
the total number of salient features (p-value < .05). We then sort
the channel with the number of salient features and select the
top-k channels. This method has the advantage of fast calculation
without training extra classifiers. However, the salient features
are not equal to the significant features, which are decided by
the feature importance of the RF classifier.

In contrast, we apply the other method to select the optimal
channels. We first train the RF classifiers per channel. We
evaluate the performance of each trained classifier and sort the
channel by its AUC. Finally, we can select top-k channels as the
candidates to train the final classifier.

Although this method requires training additional classifiers,
it has the advantage of having better performance. If the specific
channel itself can perform well by only its own features, we can
infer that by selecting the optimal number of such channels, we
can find the best trade-off between performance and computa-
tional complexity.

2) Feature Selection: After reducing the number of chan-
nels, we further lower the number of features in each channel
to reduce the time complexity during training. In [43], the
feature selection method has been shown to improve learning
performance, increase computational efficiency, decrease mem-
ory storage, and build better generalization models. Therefore,
we propose a specific feature selection method for RF classi-
fiers: correlation importance feature elimination (CIFE). The
CIFE contains two steps: unsupervised correlation clustering
and supervised importance rejection.

First, we calculate the correlation between pairs of features
with the following equations,

p (X,Y) = 2 (@i — ii) (yi — ¥i) :
VEi =25 5 - )

where X,Y are two different features, and ¢ and j are the
1th and jth data respectively. After that, features with correla-
tions higher than py,,..s are clustered. Among each cluster, only
one feature will be selected as the representative. Therefore,
after correlation clustering, the number of remaining features
will equal to the number of clusters. This process can eliminate
features that are too similar to highly reduce the number of
features.

The second step is to perform supervised importance rejec-
tion. Different from unsupervised correlation clustering, super-
vised importance rejection requires labels to pretrain a RF classi-
fier. After training the RF classifier, top-k remaining features are
selected according to the feature importance of the RF classifier.
Therefore, the final number of features is k. While comparing
with recursive feature elimination (RFE) [44], CIFE is a one-path
method which is not necessary to recursively train the classifier.
Therefore, the training efficiency of CIFE will be higher than
RFE during the selection process. Moreover, while comparing
with importance feature elimination (IFE) [45] using the feature
importance score of the RF, CIFE eliminates the similar features
in the first step which can prevent selecting redundant features.

; (14)
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AUC of different channel selection methods

0.72 1
0.70 1
S
< 0681
0.66 1
0644 1 —==- pvalue, RF
1 — AUC, RF
0 5 10 15 20 25 30

Number of channels included

Fig. 6. AUC of the p-value channel selection and the AUC-based
channel selection.

Therefore, CIFE can reach better AUC with fewer features than
IFE.

C. Experimental Results

To show the improvement of the efficiency in our proposed
method, we verify the improvements from the channel selection
and feature selection, respectively. First, we evaluate the im-
provement of channel selection and choose an optimal number of
channels. Second, we evaluate the improvement of our proposed
CIFE. We implement our experiment on the previously selected
channels. Also, we compare different methods by AUC and
training time.

The processing of the EEG signals is the same as the pre-
vious section. However, considering the issue of efficiency, we
eliminate MSE features due to their high time complexity [19].

1) Experiments on Channel Selection: In order to lower both
training and inference complexity of the overall MW detection
system, channel selection is necessary. In this experiment, we
want to analyze the efficiency of the two channel selection
methods, p-value channel selection, and AUC-based channel
selection. We first sort the thirty channels according to the
number of salient features and AUC, respectively. We then
evaluate the performance of each method by adding one channel
at a time. Finally, the AUC is used to evaluate the performance.

As shown in Fig. 6, we can see that with only one channel,
the performance can only reach 0.61~0.65 AUC. By adding one
more channel, the performance of each method reaches close
to 0.7 AUC. When comparing two methods, we can see that
the performance of AUC-based selection is slightly better than
that of p-value selection. As a result, we select two channels
to get the best trade-off between computational complexity and
performance. The detailed comparison is shown in Table IX.
In conclusion, by selecting two critical channels, we lose only
0.016 in AUC but decrease 44.16% of training time in RF
classifiers compared to the original 30 channels.

2) Experiments on Feature Selection: In this section, we aim
to further improve the system efficiency with feature selection
methods. Therefore, we compare three methods: correlation

TABLE IX
PERFORMANCE (AUC) AND TIME COMPARISON AMONG BOTH CHANNEL
SELECTION METHODS

Performance (AUC)
0.712
0.687 (-0.025)

Time (sec)
236.23
132.93 (-43.72%)

Original (30 channels)
P-value channel
selection (2 channels,
F4 and TP7)
AUC-based channel
selection (2 channels,
T7 and FP2)

0.696 (-0.016) 131.90 (-44.16%)

Performance of feature selection

0.70 A
0.65
]
=}
<
0.60 A
;’, —— Correlation Importance Feature Elimination
0.55 4 ‘-V'\J —-=-- Importance Feature Elimination
\,’ —-= Recursive Feature Elimination
Y —~ ==~ No Feature Elimination
0.50 1 T T T T T T T T
0 5 10 15 20 25 30 35 40
Feature Number
Fig. 7. Feature selection performance evaluation. The red line

represents no feature elimination, that is to say, we train the RF classifier
with 808 features.

TABLE X
PERFORMANCE AND TIME COMPARISON AMONG FEATURE SELECTION

Feature AUC (%) Overall Time (sec) Selection Time
number (sec)
808 69.4 177.02
RFE 73.2 (+3.8) 424.76 308.44
40 IFE 71.1 (+1.7) 157.97 41.15
CIFE 72.5 (+3.1) 164.58 (-61.3%%*) | 45.65 (-85.2%%*)
11 RFE 69.8 441.72 321.81
15 IFE 69.5 161.46 41.79
14 CIFE 69.6 172.18 47.14

*Comparing to RFE with 40 features.

importance feature elimination (CIFE), importance feature elim-
ination (IFE), and recursive feature elimination (RFE). In the
following experiment, we use two critical channels mentioned
in the previous section (V.C.1) (i.e., T7 and Fp2). Therefore, the
original dimension of the features is 808 (404 features/channel
x 2 channels). Moreover, the p;p,,.s of CIFE is set to 0.9.

From Fig. 7 and Table X, when the selected number of features
is small, the best feature selection method is RFE, and the worst
method is IFE. Moreover, the AUC score of CIFE with 14 fea-
tures is comparable to the AUC score without feature selection,
and the AUC score of RFE with 11 features is comparable to the
AUC score without feature selection. However, when the number
of features increases, RFE and CIFE converge to almost the same
AUC score. In contrast, CIFE performs closely to RFE, but the
computational time of CIFE is only 31% of RFE. Therefore,
when considering performance and training efficiency, CIFE is
the best choice among the three methods.
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TABLE XI TABLE XII
SELECTED FEATURES AFTER DIFFERENT FEATURE SELECTION METHODS THE BEHAVIORAL PERFORMANCE IN THE TASK
Method Feature Name Mean rating
(Number) (STD) | successful stop | fail-to-stop | rating focused wandering
RFE T7 _PSD beta, T7 MDE-20, FP2_Mean, FP2_PSD beta, RT
(11) FP2 PSD gamma, FP2 cD4-WL-MeanPower, FP2 cD4- (ms) | 412.16 (63.37) | 375.8 (58.46) | 386.07 (78.79) | 395.67 (90.77)
WL-RAM, FP2 MFDE-17, FP2 SpecEnt beta,
FP2_SpecEnt_gamma, FP2_cD7-WL-Ent RTCV | 0.19(0.09) 0.21(0.1) 0.21 (0.09) 0.35(0.2)

IFE T7_PSD_beta, T7_MFDE-19, T7_MFDE-20, T7_MDE-

(15) 18, T7_MDE-20, T7_WL-MFDE-cD7-14,
FP2_PSD beta, FP2 PSD_gamma, FP2_cD4-WL-

MeanPower, FP2_cD4-WL-STD, FP2_cD4-WL-RAM,

FP2_SpecEnt beta, FP2_SpecEnt_gamma, FP2_cD7-

WL-Ent, FP2 ¢D7-WL-SpecEnt

CIFE T7_FirstDiff, T7_HjComp, T7_PSD_beta,

(14) T7_PSD_gamma, T7_MFDE-1, T7_ WL-MFDE-cD7-14,
FP2_Mean, FP2_FirstDiff, FP2_PSD_theta,

FP2_PSD_beta, FP2_PSD_gamma, FP2_MPE-1,
FP2 _c¢D7-WL-Ent, FP2 ¢D7-WL-SpecEnt

As shown in Table XI, we list the optimal features se-
lected by these three methods. T7_PSD_beta, FP2_PSD_beta,
FP2_PSD_gamma, and FP2_cD7-WL-Ent are chosen by all
three methods. Moreover, when observing the category of the
selected features, we discover that the selected features belong
to different categories. Therefore, we conclude that the comple-
mentarity between each category of features can help improve
the overall performance of the MW detection system based on
EEG.

VI. CONCLUSION

In this paper, we present a multi-modality sustained attention
to response task (MM-SART) database. We also propose a
framework to detect MW based on the EEG signals collected
in the MM-SART database. In our framework, entropy-based
features can complement traditional EEG features and therefore
improve the performance of the overall system. Moreover, by
selecting the best two critical channels, T7 and Fp2, and applying
correlation importance feature elimination framework for RF
classifiers, we can improve the performance and computational
efficiency of the MW detection system based on EEG. The final
AUC score of our framework is 0.725 with two channels and
forty features in total. To this end, detecting MW is critical in
our daily lives, as MW can lead to negative effects on emotions,
and also influence our learning efficiency and driving safety. We
hence propose a framework that can detect MW and hopefully
this can be utilized in the educational scenarios.

APPENDIX

SUPPLEMENT OF THE MM-SART DATABASE
A. Behavioral Performance

We briefly summarize the behavioral performance here. In
the current study, successful stop rate (withhold response while
seeing target letter “C”) is 73.18%. In the reaction time (RT)
and reaction time coefficient of variation (RTCV) analysis, we
compare the performance of the 5 trials preceding the target letter
“C” and the 5 trials preceding the probe across participants.

Precisely, we extract a 10-second time window, which is the
same as the classification analysis, to compare the RT and RTCV
in objective/subjective focused and wandering states, as shown
in Table XII. Significant slower RTs are found in successful
stop conditions compared to fail-to-stop conditions (p < .001).
Additionally, a trend for smaller RTCVs in the successful stop
condition compared to those of the fail-to-stop condition is found
(p = .065). On the contrary, there is no significant difference
in RT when comparing subjectively rating focused compared
to rating wandering (p = .199). However, a significant larger
RTCYV is found in the rating wandering condition compared to
that of the rating focused condition (p < 0.001).
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